Quantcast
Channel: IT社区推荐资讯 - ITIndex.net
Viewing all articles
Browse latest Browse all 15843

如何在Hadoop里面实现二次排序

$
0
0
在hadoop里面处理的数据,默认按输入内容的key进行排序的,大部分情况下,都可以满足的我们的业务需求,但有时候,可能出现类似以下的需求,输入内容:

秦东亮;72
秦东亮;34
秦东亮;100
三劫;899
三劫;32
三劫;1
a;45
b;567
b;12

要求输出1:
a	45
b	12,567
三劫	1,32,899
秦东亮	34,72,100

要求输出2:
a	45
b	12
b	567
三劫	1
三劫	32
三劫	899
秦东亮	34
秦东亮	72
秦东亮	100

注意上面的输出1,和输出2,其实都是一样的逻辑,只不过,输出的形式稍微改了下,那么今天散仙,就来分析下,怎么在hadoop里面,实现这样的需求。

其实这样的需求,就类似数据库的标准SQL分组
SELECT A,B FROM TABLE GROUP BY  A,B ORDER BY A,B
当然也不一定,是2个字段分组,可能有2个或2个以上的多个字段分组。
下面,我们先来看下MapReduce内部执行2次排序的流程图,这图是散仙收集的,画的很不错。



由上图可知,Map在处理数据时,先由InputFormat组件提供输入格式,然后Split一行数据,默认的是TextInputFormat,Key为字节偏移量,Value为内容,然后把这行数据,传给Map,Map根据某种约定的分隔符,进行拆分数据,进行业务处理,如果是计数的直接在Value上输出1,在Map输出前,如果有Combine组件,则会执行Combine阶段,进行本地Reduce,一般是用来优化程序用的,Combine执行完后,会执行Partition组件,进行数据分区,默认的是HashPartition,按照输出的Key的哈希值与上Integer的最大值,然后对reduce的个数进行取余得到的值,经过Partition后,数据就会被按桶输出到本地磁盘上,在输出的时候,会按照Key进行排序,然后等所有的Map执行完毕后,就会进入Reduce阶段,这个阶段会进行一个大的混洗阶段,术语叫shuffle,每个reduce都会去每个map输出的分区里面,拉取对应的一部分数据,这个时候,是最耗网络IO,以及磁盘IO的,是影响性能的一个重要瓶颈,当Reduce把所有的数据拉取完毕后,就会进行分组并按照Key进行排序,每处理好一个分组,都会调用一次Reduce函数,进行累加,或其他的业务处理,处理完毕后,就会通过OutputFormat进行输出到HDFS上,至此,整个流程就执行完毕。


代码如下:
package com.qin.groupsort;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.db.DBConfiguration;
import org.apache.hadoop.mapreduce.lib.db.DBInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

import com.qin.operadb.PersonRecoder;
import com.qin.operadb.ReadMapDB;
 

/**
 * @author qindongliang
 * 
 * 大数据交流群:376932160
 * 
 * 
 * **/
public class GroupSort {
	
	/**
	 * map任务
	 * 
	 * */
	public static class GMapper extends Mapper<LongWritable, Text, DescSort, IntWritable>{
		private DescSort tx=new DescSort();
		private IntWritable second=new IntWritable();
		@Override
		protected void map(LongWritable key, Text value,Context context)
				throws IOException, InterruptedException {
			System.out.println("执行map");
			// System.out.println("进map了");
			//mos.write(namedOutput, key, value);
			String ss[]=value.toString().split(";");
			String mkey=ss[0];
			int mvalue=Integer.parseInt(ss[1]);
			tx.setFirstKey(mkey);
			tx.setSecondKey(mvalue);
			second.set(mvalue);
			context.write(tx, second);
		}
	}
	 /***
	  * Reduce任务
	  * 
	  * **/
	 public static class GReduce extends Reducer<DescSort, IntWritable, Text, Text>{
		 @Override
		protected void reduce(DescSort arg0, Iterable<IntWritable> arg1, Context ctx)
				throws IOException, InterruptedException {
			 System.out.println("执行reduce");
			 StringBuffer sb=new StringBuffer();
			 for(IntWritable t:arg1){
				// sb.append(t).append(",");
				 //con
				 ctx.write(new Text(arg0.getFirstKey()), new Text(t.toString())); 
				 /**这种写法,是这种输出
				
				*a	45
				*b	12
				 b	567
				   三劫	1
				  三劫	32
				  三劫	899
				  秦东亮	34
				  秦东亮	72
				  秦东亮	100 
				 */ 
				 
				 
			 }
			 
			 if(sb.length()>0){
				 sb.deleteCharAt(sb.length()-1);//删除最后一位的逗号
			 }
			 
			 
//			 在循环里拼接,在循环外输出是这种格式
//			 b	12,567
//			 三劫	1,32,899
//			 秦东亮	34,72,100
			 // ctx.write(new Text(arg0.getFirstKey()), new Text(sb.toString())); 
			 
			 
		}
		 
	 
		 
	 }
	 
	 
	 /***
	  * 
	  * 自定义组合键
	  * **/
	 	public static class DescSort implements  WritableComparable{

	 		 public DescSort() {
				// TODO Auto-generated constructor stub
			}
	 		private String firstKey;
	 		private int secondKey;
	 		
	 		
	 		 public String getFirstKey() {
				return firstKey;
			}
			public void setFirstKey(String firstKey) {
				this.firstKey = firstKey;
			}
			public int getSecondKey() {
				return secondKey;
			}
			public void setSecondKey(int secondKey) {
				this.secondKey = secondKey;
			}
		 
			
			
			
//	 		 @Override
//	 		public int compare(byte[] arg0, int arg1, int arg2, byte[] arg3,
//	 				int arg4, int arg5) {
//	 			return -super.compare(arg0, arg1, arg2, arg3, arg4, arg5);//注意使用负号来完成降序
//	 		}
//	 		 
//	 		 @Override
//	 		public int compare(Object a, Object b) {
//	 	 
//	 			return   -super.compare(a, b);//注意使用负号来完成降序
//	 		}
			@Override
			public void readFields(DataInput in) throws IOException {
				// TODO Auto-generated method stub
				firstKey=in.readUTF();
				secondKey=in.readInt();
			}
			@Override
			public void write(DataOutput out) throws IOException {
				out.writeUTF(firstKey);
				out.writeInt(secondKey);
				
			}
			@Override
			public int compareTo(Object o) {
				// TODO Auto-generated method stub
				 DescSort d=(DescSort)o;
				 //this在前代表升序
				return this.getFirstKey().compareTo(d.getFirstKey());
			}
			 
	 		
	 	}
	 
	 	
	 	/**
	 	 * 主要就是对于分组进行排序,分组只按照组建键中的一个值进行分组
	 	 * 
	 	 * **/
	 	public static class TextComparator extends WritableComparator{

			 public TextComparator() {
				// TODO Auto-generated constructor stub
				 super(DescSort.class,true);//注册Comparator
			}
			 @Override
			public int compare(WritableComparable a, WritableComparable b) {
				System.out.println("执行TextComparator分组排序");
				 DescSort d1=(DescSort)a;
				 DescSort d2=(DescSort)b;
				return  d1.getFirstKey().compareTo(d2.getFirstKey());
			}
	 	}
	 	/**
	 	 * 组内排序的策略
	 	 * 按照第二个字段排序
	 	 * 
	 	 * */
	 	public static class TextIntCompartator extends WritableComparator{
	 		
	 		public TextIntCompartator() {
				super(DescSort.class,true);
			}
	 		
	 		@Override
	 		public int compare(WritableComparable a, WritableComparable b) {
	 			DescSort d1=(DescSort)a;
				DescSort d2=(DescSort)b;
	 			System.out.println("执行组内排序TextIntCompartator");
				if(!d1.getFirstKey().equals(d2.getFirstKey())){
					return d1.getFirstKey().compareTo(d2.getFirstKey());
				}else{
					return d1.getSecondKey()-d2.getSecondKey();//0,-1,1
				}
	 		}
	 	}
	 	/**
	 	 * 分区策略
	 	 * 
	 	 * */
	 public static class KeyPartition extends Partitioner<DescSort, IntWritable>{
		 @Override
		public int getPartition(DescSort key, IntWritable arg1, int arg2) {
			// TODO Auto-generated method stub
			 System.out.println("执行自定义分区KeyPartition");
			return (key.getFirstKey().hashCode()&Integer.MAX_VALUE)%arg2;
		} 
	 }
	 public static void main(String[] args) throws Exception{
		 JobConf conf=new JobConf(ReadMapDB.class);
		 //Configuration conf=new Configuration();
	  	  conf.set("mapred.job.tracker","192.168.75.130:9001");
		//读取person中的数据字段
	  	  conf.setJar("tt.jar");
		//注意这行代码放在最前面,进行初始化,否则会报
	 
	 
		/**Job任务**/
		Job job=new Job(conf, "testpartion");
		job.setJarByClass(GroupSort.class);
		System.out.println("模式:  "+conf.get("mapred.job.tracker"));;
		// job.setCombinerClass(PCombine.class);
		// job.setNumReduceTasks(3);//设置为3
		 job.setMapperClass(GMapper.class);
		 job.setReducerClass(GReduce.class);
		
		 /**设置分区函数*/
		job.setPartitionerClass(KeyPartition.class);
		
		//分组函数,Reduce前的一次排序
		 job.setGroupingComparatorClass(TextComparator.class);
		//组内排序Map输出完毕后,对key进行的一次排序
		
		 
		 
		 job.setSortComparatorClass(TextIntCompartator.class);
		
		//TextComparator.class
		//TextIntCompartator.class
		// job.setGroupingComparatorClass(TextIntCompartator.class);
		//组内排序Map输出完毕后,对key进行的一次排序
		 // job.setSortComparatorClass(TextComparator.class);
		
		
		
		 job.setMapOutputKeyClass(DescSort.class);
		 job.setMapOutputValueClass(IntWritable.class);
		 job.setOutputKeyClass(Text.class);
		 job.setOutputValueClass(Text.class);
	    
		String path="hdfs://192.168.75.130:9000/root/outputdb";
		FileSystem fs=FileSystem.get(conf);
		Path p=new Path(path);
		if(fs.exists(p)){
			fs.delete(p, true);
			System.out.println("输出路径存在,已删除!");
		}
		FileInputFormat.setInputPaths(job, "hdfs://192.168.75.130:9000/root/input");
		FileOutputFormat.setOutputPath(job,p );
		System.exit(job.waitForCompletion(true) ? 0 : 1);  
	}

}

在eclipse下,执行,打印日志内容如下:
模式:  192.168.75.130:9001
输出路径存在,已删除!
WARN - JobClient.copyAndConfigureFiles(746) | Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
INFO - FileInputFormat.listStatus(237) | Total input paths to process : 1
WARN - NativeCodeLoader.<clinit>(52) | Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
WARN - LoadSnappy.<clinit>(46) | Snappy native library not loaded
INFO - JobClient.monitorAndPrintJob(1380) | Running job: job_201404152114_0003
INFO - JobClient.monitorAndPrintJob(1393) |  map 0% reduce 0%
INFO - JobClient.monitorAndPrintJob(1393) |  map 100% reduce 0%
INFO - JobClient.monitorAndPrintJob(1393) |  map 100% reduce 33%
INFO - JobClient.monitorAndPrintJob(1393) |  map 100% reduce 100%
INFO - JobClient.monitorAndPrintJob(1448) | Job complete: job_201404152114_0003
INFO - Counters.log(585) | Counters: 29
INFO - Counters.log(587) |   Job Counters 
INFO - Counters.log(589) |     Launched reduce tasks=1
INFO - Counters.log(589) |     SLOTS_MILLIS_MAPS=7040
INFO - Counters.log(589) |     Total time spent by all reduces waiting after reserving slots (ms)=0
INFO - Counters.log(589) |     Total time spent by all maps waiting after reserving slots (ms)=0
INFO - Counters.log(589) |     Launched map tasks=1
INFO - Counters.log(589) |     Data-local map tasks=1
INFO - Counters.log(589) |     SLOTS_MILLIS_REDUCES=9807
INFO - Counters.log(587) |   File Output Format Counters 
INFO - Counters.log(589) |     Bytes Written=86
INFO - Counters.log(587) |   FileSystemCounters
INFO - Counters.log(589) |     FILE_BYTES_READ=162
INFO - Counters.log(589) |     HDFS_BYTES_READ=205
INFO - Counters.log(589) |     FILE_BYTES_WRITTEN=111232
INFO - Counters.log(589) |     HDFS_BYTES_WRITTEN=86
INFO - Counters.log(587) |   File Input Format Counters 
INFO - Counters.log(589) |     Bytes Read=93
INFO - Counters.log(587) |   Map-Reduce Framework
INFO - Counters.log(589) |     Map output materialized bytes=162
INFO - Counters.log(589) |     Map input records=9
INFO - Counters.log(589) |     Reduce shuffle bytes=162
INFO - Counters.log(589) |     Spilled Records=18
INFO - Counters.log(589) |     Map output bytes=138
INFO - Counters.log(589) |     Total committed heap usage (bytes)=176033792
INFO - Counters.log(589) |     CPU time spent (ms)=970
INFO - Counters.log(589) |     Combine input records=0
INFO - Counters.log(589) |     SPLIT_RAW_BYTES=112
INFO - Counters.log(589) |     Reduce input records=9
INFO - Counters.log(589) |     Reduce input groups=4
INFO - Counters.log(589) |     Combine output records=0
INFO - Counters.log(589) |     Physical memory (bytes) snapshot=258830336
INFO - Counters.log(589) |     Reduce output records=9
INFO - Counters.log(589) |     Virtual memory (bytes) snapshot=1461055488
INFO - Counters.log(589) |     Map output records=9

执行完,我们在输出目录里里面查看



执行完,内容如下:
a	45
b	12
b	567
三劫	1
三劫	32
三劫	899
秦东亮	34
秦东亮	72
秦东亮	100


我们发现,跟我们预期的结果一致,熟悉MapReduce的执行原理,可以帮助我们更好的使用Hive,因为Hive本身就是一个或多个MapReduce作业构成的,Hive语句的优化,对MapReduce作业的影响的性能也是不容忽视的,所以我们一定要多熟悉熟悉MapReduce编程的模型,以便于我们对它有一个更清晰的认识和了解。







已有 0人发表留言,猛击->> 这里<<-参与讨论


ITeye推荐




Viewing all articles
Browse latest Browse all 15843

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>