MapReduce的特征 1. 每个分片输入的文件可以比较大。默认64M Map1结果与Map2结果重叠现象?(传统的分布式计算无法解决) 方案:Map2与Map2原封不动的把数据传到Reduce; 问题:结果Map啥事没干,Reduce最终累死, 分而治之成为了空谈。 最终方案:使用partition把相同key的结果分配到同一个reduce上执行 输入文件把切分成多个块, 每个块的默认大小是64M, 每一个块就是一个maptask任务 map任务工作过程: Map从HDFS上获取数据块(Datanode上每个map任务都会有一个内存缓冲区(默认100M),用来存储它输出的结果「有它的原因:减少对磁盘的读写频率」) 如果map结果很大使缓冲区默认100M满了后将缓冲区中数据spill到磁盘上(spill过程), 默认是80%时就spill(可以设置), spill过程中map还产生结果; spill过程 对数据进行sort; spill出来的单独文件(又叫溢写文件);如果有大数据量的话,就生成多个溢写文件,又要将这些文件合并起来(merge过程「可以通过参数设置每次merge多少个文件」); 问题:如果merge只是只是合并过程,像WordCount例子,第一个溢写文件中key:name value:4, 第二个溢写文件key:name value:3 的话,merge后还会出现此key值的,所以如果之前设置了combiner,就会使用combiner将相同的key的value进行合并; 最终的这个输出文件也是存储在本地磁盘中。 reduce任务工作过程: reduce是将map的输出作为reduce的输入,只要有一个map任务执行完就会有reduce任务开始执行。实际运行过程中,map与reduce运行过程很可能不是在同一个datanode上,那它们是通过什么来联系的呢?reduce是通过http向JobTracker发请求看那些map执行完了,然后从map所在的TaskTracker远程获取map的输出文件,注意:并不是获取整个map的输出文件, 而是获取reduce能处理的了的数据; 在这个下载过程中,也会做归并排序,因为不同的map很有可能含有相同的key值; 对于reduce来说它的文件来源可能来自多个map,这个下载过程可以是并行的,不过这个并行数据可以设置的,默认是5,即使reduce 所需要的数据是从很多个map上的(若是大于设置的并行度),也只能一次并行的从设置的这么多个Map上下载所需数据;copy获取到的数据也是放到内存当中, 问题:处理10亿条数据,只求最大值, 这样的话在网上传输占了很大的带宽/专利计算中最终会把数据聚集到reduce端,加重reduce负担 Combiner:就是把了减少map与reduce间数据传输而设置的; 注意:combine的输入和reduce的完全一致,输出和map的完全一致;一个combiner只是处理一个结点的输出,不像reduce享受shuffle后的数据;“迷你reduce” 注意几点: 1.与map和reduce不同,combiner没有默认的实现 2.并不是所有的任务都适合使用combiner,比如 求最大值,求和可以, 求中值不行, 平均值也应该不行; 词频统计map输出(hello, 1), (hello, 1)经过combiner后(hello, 2)压缩后再送到reduce
已有 0人发表留言,猛击->> 这里<<-参与讨论
ITeye推荐