关于我, 邯郸人。
对这类话题感兴趣?欢迎发送邮件至 donlianli@126.com
请支持原创http://donlianli.iteye.com/blog/2094305
es在查询时,可以指定搜索类型为QUERY_THEN_FETCH,QUERY_AND_FEATCH,DFS_QUERY_THEN_FEATCH和DFS_QUERY_AND_FEATCH。那么这4种搜索类型有什么区别?
分布式搜索背景介绍:
ES天生就是为分布式而生,但分布式有分布式的缺点。比如要搜索某个单词,但是数据却分别在5个分片(Shard)上面,这5个分片可能在5台主机上面。因为全文搜索天生就要排序(按照匹配度进行排名),但数据却在5个分片上,如何得到最后正确的排序呢?ES是这样做的,大概分两步。
step1、ES客户端会将这个搜索词同时向5个分片发起搜索请求,这叫Scatter,
step2、这5个分片基于本Shard独立完成搜索,然后将符合条件的结果全部返回,这一步叫Gather。
客户端将返回的结果进行重新排序和排名,最后返回给用户。也就是说,ES的一次搜索,是一次scatter/gather过程(这个跟mapreduce也很类似).
然而这其中有两个问题。
第一、数量问题。比如,用户需要搜索"双黄连",要求返回最符合条件的前10条。但在5个分片中,可能都存储着双黄连相关的数据。所以ES会向这5个分片都发出查询请求,并且要求每个分片都返回符合条件的10条记录。当ES得到返回的结果后,进行整体排序,然后取最符合条件的前10条返给用户。这种情况,ES5个shard最多会收到10*5=50条记录,这样返回给用户的结果数量会多于用户请求的数量。
第二、排名问题。上面搜索,每个分片计算分值都是基于自己的分片数据进行计算的。计算分值使用的词频率和其他信息都是基于自己的分片进行的,而ES进行整体排名是基于每个分片计算后的分值进行排序的,这就可能会导致排名不准确的问题。如果我们想更精确的控制排序,应该先将计算排序和排名相关的信息(词频率等)从5个分片收集上来,进行统一计算,然后使用整体的词频率去每个分片进行查询。
这两个问题,估计ES也没有什么较好的解决方法,最终把选择的权利交给用户,方法就是在搜索的时候指定query type。
1、query and fetch
向索引的所有分片(shard)都发出查询请求,各分片返回的时候把元素文档(document)和计算后的排名信息一起返回。这种搜索方式是最快的。因为相比下面的几种搜索方式,这种查询方法只需要去shard查询一次。但是各个shard返回的结果的数量之和可能是用户要求的size的n倍。
2、query then fetch(默认的搜索方式)
如果你搜索时,没有指定搜索方式,就是使用的这种搜索方式。这种搜索方式,大概分两个步骤,第一步,先向所有的shard发出请求,各分片只返回排序和排名相关的信息(注意,不包括文档document),然后按照各分片返回的分数进行重新排序和排名,取前size个文档。然后进行第二步,去相关的shard取document。这种方式返回的document与用户要求的size是相等的。
3、DFS query and fetch
这种方式比第一种方式多了一个初始化散发(initial scatter)步骤,有这一步,据说可以更精确控制搜索打分和排名。
4、 DFS query then fetch
比第2种方式多了一个初始化散发(initial scatter)步骤。
DSF是什么缩写?初始化散发是一个什么样的过程?
从es的官方网站我们可以指定,初始化散发其实就是在进行真正的查询之前,先把各个分片的词频率和文档频率收集一下,然后进行词搜索的时候,各分片依据全局的词频率和文档频率进行搜索和排名。显然如果使用DFS_QUERY_THEN_FETCH这种查询方式,效率是最低的,因为一个搜索,可能要请求3次分片。但,使用DFS方法,搜索精度应该是最高的。
至于DFS是什么缩写,没有找到相关资料,这个D可能是Distributed,F可能是frequency的缩写,至于S可能是Scatter的缩写,整个单词可能是分布式词频率和文档频率散发的缩写。
总结一下,从性能考虑QUERY_AND_FETCH是最快的,DFS_QUERY_THEN_FETCH是最慢的。从搜索的准确度来说,DFS要比非DFS的准确度更高。
已有 0人发表留言,猛击->> 这里<<-参与讨论
ITeye推荐