一、概述
针对文本相似性计算,很多开发朋友首先想到的应该是使用向量空间模型VSM(Vector Space Model)。使用VSM计算相似度,先对文本进行分词,然后建立文本向量,把相似度的计算转换成某种特征向量距离的计算,比如余弦角、欧式距离、Jaccard相似系数等。这种方法存在很大一个问题:需要对文本两两进行相似度比较,无法扩展到海量文本的处理。想想像Google这种全网搜索引擎,收录了上百亿的网页,爬虫每天爬取的网页数都是百万千万级别的。为了防止重复收录网页,爬虫需要对网页进行判重处理。如果采用VSM方法,计算量是相当可观的。
二、思想
输入为一个N维向量V,比如文本的特征向量,每个特征具有一定权重。输出是一个C位的二进制签名S。
1)初始化一个C维向量Q为0,C位的二进制签名S为0。
2)对向量V中的每一个特征,使用传统的Hash算法计算出一个C位的散列值H。对1<=i<=C,
如果H的第i位为1,则Q的第i个元素加上该特征的权重;
否则,Q的第i个元素减去该特征的权重。
3)如果Q的第i个元素大于0,则S的第i位为1;否则为0;
4)返回签名S。
三、java实现
import java.math.BigInteger; import java.util.StringTokenizer; public class SimHash { private String tokens; private BigInteger strSimHash; private int hashbits = 128; public SimHash(String tokens) { this.tokens = tokens; this.strSimHash = this.simHash(); } public SimHash(String tokens, int hashbits) { this.tokens = tokens; this.hashbits = hashbits; this.strSimHash = this.simHash(); } public BigInteger simHash() { int[] v = new int[this.hashbits]; StringTokenizer stringTokens = new StringTokenizer(this.tokens); while (stringTokens.hasMoreTokens()) { String temp = stringTokens.nextToken(); BigInteger t = this.hash(temp); System.out.println("temp = " + temp+" : " + t); for (int i = 0; i < this.hashbits; i++) { BigInteger bitmask = new BigInteger("1").shiftLeft(i); if (t.and(bitmask).signum() != 0) { v[i] += 1; } else { v[i] -= 1; } } } BigInteger fingerprint = new BigInteger("0"); for (int i = 0; i < this.hashbits; i++) { if (v[i] >= 0) { fingerprint = fingerprint.add(new BigInteger("1").shiftLeft(i)); } } return fingerprint; } private BigInteger hash(String source) { if (source == null || source.length() == 0) { return new BigInteger("0"); } else { char[] sourceArray = source.toCharArray(); BigInteger x = BigInteger.valueOf(((long) sourceArray[0]) << 7); BigInteger m = new BigInteger("1000003"); BigInteger mask = new BigInteger("2").pow(this.hashbits).subtract( new BigInteger("1")); for (char item : sourceArray) { BigInteger temp = BigInteger.valueOf((long) item); x = x.multiply(m).xor(temp).and(mask); } x = x.xor(new BigInteger(String.valueOf(source.length()))); if (x.equals(new BigInteger("-1"))) { x = new BigInteger("-2"); } return x; } } public int hammingDistance(SimHash other) { BigInteger m = new BigInteger("1").shiftLeft(this.hashbits).subtract( new BigInteger("1")); BigInteger x = this.strSimHash.xor(other.strSimHash).and(m); int tot = 0; while (x.signum() != 0) { tot += 1; x = x.and(x.subtract(new BigInteger("1"))); } return tot; } public static void main(String[] args) { String s = "China people's Republic of China Chinese China people's Republic of China People's Republic of China"; SimHash hash1 = new SimHash(s, 128); System.out.println(hash1.strSimHash + " " + hash1.strSimHash.bitLength()); s = "China people's Republic of China Chinese China people's Republic of China"; SimHash hash2 = new SimHash(s, 128); System.out.println(hash2.strSimHash + " " + hash2.strSimHash.bitCount()); s = "China people's Republic"; SimHash hash3 = new SimHash(s, 128); System.out.println(hash3.strSimHash + " " + hash3.strSimHash.bitCount()); System.out.println("============================"); System.out.println(hash1.hammingDistance(hash2)); System.out.println(hash1.hammingDistance(hash3)); } }
已有 0人发表留言,猛击->> 这里<<-参与讨论
ITeye推荐