Quantcast
Channel: IT社区推荐资讯 - ITIndex.net
Viewing all articles
Browse latest Browse all 15843

scala 开发spark程序

$
0
0

Spark内核是由Scala语言开发的,因此使用Scala语言开发Spark应用程序是自然而然的事情。如果你对Scala语言还不太熟悉,可以阅读网络教程 A Scala Tutorial for Java Programmers或者相关 Scala书籍进行学习。

 

本文将介绍3个Scala Spark编程实例,分别是WordCount、TopK和SparkJoin,分别代表了Spark的三种典型应用。

1. WordCount编程实例

WordCount是一个最简单的分布式应用实例,主要功能是统计输入目录中所有单词出现的总次数,编写步骤如下:

步骤1:创建一个SparkContext对象,该对象有四个参数:Spark master位置、应用程序名称,Spark安装目录和jar存放位置,对于Spark On YARN而言,最重要的是前两个参数,第一个参数指定为“yarn-standalone”,第二个参数是自定义的字符串,举例如下:

1
2
valsc =newSparkContext(args(0), "WordCount",
    System.getenv("SPARK_HOME"), Seq(System.getenv("SPARK_TEST_JAR")))

步骤2:读取输入数据。我们要从HDFS上读取文本数据,可以使用SparkContext中的textFile函数将输入文件转换为一个RDD,该函数采用的是Hadoop中的TextInputFormat解析输入数据,举例如下:

1
valtextFile =sc.textFile(args(1))

当然,Spark允许你采用任何Hadoop InputFormat,比如二进制输入格式SequenceFileInputFormat,此时你可以使用SparkContext中的hadoopRDD函数,举例如下:

1
2
valinputFormatClass =classOf[SequenceFileInputFormat[Text,Text]]
varhadoopRdd =sc.hadoopRDD(conf, inputFormatClass, classOf[Text], classOf[Text])

或者直接创建一个HadoopRDD对象:

1
2
varhadoopRdd =newHadoopRDD(sc, conf,
     classOf[SequenceFileInputFormat[Text,Text, classOf[Text], classOf[Text])

步骤3:通过RDD转换算子操作和转换RDD,对于WordCount而言,首先需要从输入数据中每行字符串中解析出单词,然后将相同单词放到一个桶中,最后统计每个桶中每个单词出现的频率,举例如下:

1
2
3
    valresult =hadoopRdd.flatMap{
        case(key, value)  => value.toString().split("\\s+");
}.map(word => (word, 1)). reduceByKey (_+ _)

其中,flatMap函数可以将一条记录转换成多条记录(一对多关系),map函数将一条记录转换为另一条记录(一对一关系),reduceByKey函数将key相同的数据划分到一个桶中,并以key为单位分组进行计算,这些函数的具体含义可参考:Spark Transformation

步骤4:将产生的RDD数据集保存到HDFS上。可以使用SparkContext中的saveAsTextFile哈数将数据集保存到HDFS目录下,默认采用Hadoop提供的TextOutputFormat,每条记录以“(key,value)”的形式打印输出,你也可以采用saveAsSequenceFile函数将数据保存为SequenceFile格式等,举例如下:

1
result.saveAsSequenceFile(args(2))

当然,一般我们写Spark程序时,需要包含以下两个头文件:

1
2
importorg.apache.spark._
importSparkContext._

WordCount完整程序已在“ Apache Spark学习:利用Eclipse构建Spark集成开发环境”一文中进行了介绍,在次不赘述。

需要注意的是,指定输入输出文件时,需要指定hdfs的URI,比如输入目录是hdfs://hadoop-test/tmp/input,输出目录是hdfs://hadoop-test/tmp/output,其中,“hdfs://hadoop-test”是由Hadoop配置文件core-site.xml中参数fs.default.name指定的,具体替换成你的配置即可。

2. TopK编程实例

TopK程序的任务是对一堆文本进行词频统计,并返回出现频率最高的K个词。如果采用MapReduce实现,则需要编写两个作业:WordCount和TopK,而使用Spark则只需一个作业,其中WordCount部分已由前面实现了,接下来顺着前面的实现,找到Top K个词。注意,本文的实现并不是最优的,有很大改进空间。

步骤1:首先需要对所有词按照词频排序,如下:

1
2
3
valsorted =result.map {
  case(key, value) => (value, key); //exchange key and value
}.sortByKey(true, 1)

步骤2:返回前K个:

1
valtopK =sorted.top(args(3).toInt)

步骤3:将K各词打印出来:

1
topK.foreach(println)

注意,对于应用程序标准输出的内容,YARN将保存到Container的stdout日志中。在YARN中,每个Container存在三个日志文件,分别是stdout、stderr和syslog,前两个保存的是标准输出产生的内容,第三个保存的是log4j打印的日志,通常只有第三个日志中有内容。

本程序完整代码、编译好的jar包和运行脚本可以从 这里下载。下载之后,按照“ Apache Spark学习:利用Eclipse构建Spark集成开发环境”一文操作流程运行即可。

3. SparkJoin编程实例

在推荐领域有一个著名的开放测试集是movielens给的,下载链接是: http://grouplens.org/datasets/movielens/,该测试集包含三个文件,分别是ratings.dat、sers.dat、movies.dat,具体介绍可阅读: README.txt,本节给出的SparkJoin实例则通过连接ratings.dat和movies.dat两个文件得到平均得分超过4.0的电影列表,采用的数据集是: ml-1m。程序代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
importorg.apache.spark._
importSparkContext._
objectSparkJoin {
  defmain(args:Array[String]) {
    if(args.length !=4){
      println("usage is org.test.WordCount <master> <rating> <movie> <output>")
      return
    }
    valsc =newSparkContext(args(0), "WordCount",
    System.getenv("SPARK_HOME"), Seq(System.getenv("SPARK_TEST_JAR")))
 
    // Read rating from HDFS file
    valtextFile =sc.textFile(args(1))
 
    //extract (movieid, rating)
    valrating =textFile.map(line => {
        valfileds =line.split("::")
        (fileds(1).toInt, fileds(2).toDouble)
       })
 
    valmovieScores =rating
       .groupByKey()
       .map(data => {
         valavg =data._2.sum / data._2.size
         (data._1, avg)
       })
 
     // Read movie from HDFS file
     valmovies =sc.textFile(args(2))
     valmovieskey =movies.map(line => {
       valfileds =line.split("::")
        (fileds(0).toInt, fileds(1))
     }).keyBy(tup => tup._1)
 
     // by join, we get <movie, averageRating, movieName>
     valresult =movieScores
       .keyBy(tup => tup._1)
       .join(movieskey)
       .filter(f => f._2._1._2> 4.0)
       .map(f => (f._1, f._2._1._2, f._2._2._2))
 
    result.saveAsTextFile(args(3))
  }
}

你可以从 这里下载代码、编译好的jar包和运行脚本。

这个程序直接使用Spark编写有些麻烦,可以直接在 Shark上编写HQL实现,Shark是基于Spark的类似Hive的交互式查询引擎,具体可参考: Shark

4. 总结

Spark 程序设计对Scala语言的要求不高,正如Hadoop程序设计对Java语言要求不高一样,只要掌握了最基本的语法就能编写程序,且常见的语法和表达方式是很少的。通常,刚开始仿照官方实例编写程序,包括 Scala、Java和Python三种语言实例。



已有 0人发表留言,猛击->> 这里<<-参与讨论


ITeye推荐




Viewing all articles
Browse latest Browse all 15843

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>