Quantcast
Channel: IT社区推荐资讯 - ITIndex.net
Viewing all articles
Browse latest Browse all 15843

map-reduce自定义分组自定义排序

$
0
0

 

package group;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.net.URI;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.RawComparator;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;

/**
#当第一列相同时,求出第二列的最小值
3	3
3	2
3	1
2	2
2	1
1	1
 * @author zm
 *
 * 当第一列相同时,求出第二列的最小值--->  由要求分析如下:
 * 1 必然以 row1来进行分组   
 * 2 必然也是以 row1,row2作为一个整体来进行比较才能有 当第一列相同时,在比较第二列的状态发生
 * 3 mr中,执行流程是 <k0,v0>--><k1,v1>--><k2,v2>--><k3,v3> 
 * 		以 wordcount为例(hello you
 * 					   hello me
 *      <k0,v0>是 行号和当前行内文本
 *      <k1,v1>是经过map()方法后得到的 <hello,1> <you,1> <hello,1> <me,1>
 *      <k2,v2>是经过默认默认排序(以key1的asci码升序排),和默认分组(以key1的asci为基准分组) : <hello,{1,1}>  <me,{1}>  <you,{1}>
 * 		<k3,v3>是经过redecu()方法处理后,真正写出到hdfs文件的最终处理结果
 *     上述流程可知,先执行 map(),执行map()同时根据key执行排序,然后执行分组操作
 *     
 * 结论:
 * 1 基于需要 row1,row2作为一个整体来进行比较,因此自定义 NewK2,重写此类compareTo方法(这里使用升序方式) ,指定排序规则
 * 2 排序后,实现分组时,因为此时的NewK2作为整体,如若用默认规则使用NewK2作为分组基准时,必然分组成6个组,因此指定自定义分组器取代默认规则,注意自定义分组器是对NewK2进行分组
 *  
 *  执行过程中 key value变化:
 *  <k0,v0> --> <k1,v1>----> <k2,v2>---> <k3,v3>:
	<行号,行内容> ---> <(3,3),3> <(3,2),2> <(3,1),1>  <(2,2),2> <(2,2),1> <(1,1),1> --->自定义分组,针对newk2进行分组,
	得到分组结果 <以3为row1的newk2,{3,2,1}> <以2为row1的newk2,{2,1}> <以1为row1的newk2,{1}>--->调用redece,得到<3,1> <2,1> <1,1>
 */
public class MyGroupApp {
	static final String INPUT_PATH = "hdfs://master:9000/hello";
	static final String OUT_PATH = "hdfs://master:9000/out";
	public static void main(String[] args) throws Exception{
		final Configuration configuration = new Configuration();
		final FileSystem fileSystem = FileSystem.get(new URI(INPUT_PATH), configuration);
		if(fileSystem.exists(new Path(OUT_PATH))){
			fileSystem.delete(new Path(OUT_PATH), true);
		}
		final Job job = new Job(configuration, GroupApp.class.getSimpleName());
		//1.1 指定输入文件路径
		FileInputFormat.setInputPaths(job, INPUT_PATH);
		//指定哪个类用来格式化输入文件
		job.setInputFormatClass(TextInputFormat.class);
		
		//1.2指定自定义的Mapper类
		job.setMapperClass(MyMapper.class);
		//指定输出<k2,v2>的类型
		job.setMapOutputKeyClass(NewK2.class);
		job.setMapOutputValueClass(LongWritable.class);
		
		//1.3 指定分区类
		job.setPartitionerClass(HashPartitioner.class);
		job.setNumReduceTasks(1);
		
		//1.4 TODO 排序、分区
		job.setGroupingComparatorClass(MyGroupingComparator.class);
		//1.5  TODO (可选)合并
		
		//2.2 指定自定义的reduce类
		job.setReducerClass(MyReducer.class);
		//指定输出<k3,v3>的类型
		job.setOutputKeyClass(LongWritable.class);
		job.setOutputValueClass(LongWritable.class);
		
		//2.3 指定输出到哪里
		FileOutputFormat.setOutputPath(job, new Path(OUT_PATH));
		//设定输出文件的格式化类
		job.setOutputFormatClass(TextOutputFormat.class);
		
		//把代码提交给JobTracker执行
		job.waitForCompletion(true);
	}

	
	static class MyMapper extends Mapper<LongWritable, Text, NewK2, LongWritable>{
		protected void map(LongWritable key, Text value, Context context) throws java.io.IOException ,InterruptedException {
			final String[] splited = value.toString().split("\t");
			final NewK2 k2 = new NewK2(Long.parseLong(splited[0]), Long.parseLong(splited[1]));
			final LongWritable v2 = new LongWritable(Long.parseLong(splited[1]));
			context.write(k2, v2);
		};
	}
	static class MyReducer extends Reducer<NewK2, LongWritable, LongWritable, LongWritable>{
		protected void reduce(NewK2 k2, java.lang.Iterable<LongWritable> v2s, Context context) throws java.io.IOException ,InterruptedException {
			long min = Long.MAX_VALUE;
			for (LongWritable v2 : v2s) {
				if(v2.get()<min){
					min = v2.get();
				}
			}
			context.write(new LongWritable(k2.first), new LongWritable(min));
		};
	}
	/**
	 * 问:为什么实现该类?
	 * 答:因为原来的v2不能参与排序,把原来的k2和v2封装到一个类中,作为新的k2
	 *
	 */
	static class  NewK2 implements WritableComparable<NewK2>{
		Long first;
		Long second;
		public NewK2(){}
		public NewK2(long first, long second){
			this.first = first;
			this.second = second;
		}
		@Override
		public void readFields(DataInput in) throws IOException {
			this.first = in.readLong();
			this.second = in.readLong();
		}

		@Override
		public void write(DataOutput out) throws IOException {
			out.writeLong(first);
			out.writeLong(second);
		}

		/**
		 * 当k2进行排序时,会调用该方法.
		 * 当第一列不同时,升序;当第一列相同时,第二列升序
		 */
		@Override
		public int compareTo(NewK2 o) {
			final long minus = this.first - o.first;
			if(minus !=0){
				return (int)minus;
			}
			return (int)(this.second - o.second);
		}
		
		@Override
		public int hashCode() {
			return this.first.hashCode()+this.second.hashCode();
		}
		
		@Override
		public boolean equals(Object obj) {
			if(!(obj instanceof NewK2)){
				return false;
			}
			NewK2 oK2 = (NewK2)obj;
			return (this.first==oK2.first)&&(this.second==oK2.second);
		}
	}
	/**
	 * 问:为什么自定义该类?
	 * 答:业务要求分组是按照第一列分组,但是NewK2的比较规则决定了不能按照第一列分。只能自定义分组比较器。
	 */
	static class MyGroupingComparator implements RawComparator<NewK2>{

	// 第一种比较方式:按照对象进行比较
		@Override
		public int compare(NewK2 o1, NewK2 o2) {
			return (int)(o1.first - o2.first);
		}
		// 第二种比较方式: 按照字节进行比较
		/**
		 * @param arg0 表示第一个参与比较的字节数组
		 * @param arg1 表示第一个参与比较的字节数组的起始位置
		 * @param arg2 表示第一个参与比较的字节数组的偏移量
		 * 
		 * @param arg3 表示第二个参与比较的字节数组
		 * @param arg4 表示第二个参与比较的字节数组的起始位置
		 * @param arg5 表示第二个参与比较的字节数组的偏移量
		 */
		@Override
		public int compare(byte[] arg0, int arg1, int arg2, byte[] arg3,
				int arg4, int arg5) {
			return WritableComparator.compareBytes(arg0, arg1, 8, arg3, arg4, 8);
		}
		
	}
}

 



已有 0人发表留言,猛击->> 这里<<-参与讨论


ITeye推荐




Viewing all articles
Browse latest Browse all 15843

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>