Quantcast
Channel: IT社区推荐资讯 - ITIndex.net
Viewing all articles
Browse latest Browse all 15843

heipark------hadoop性能调优笔记

$
0
0

Hadoop调优

mapred.tasktracker.map.tasks.maximum

 

官方解释:The maximum number of map tasks that will be run  simultaneously by a task tracker.

 

我的理解:一个tasktracker最多可以同时运行的map任务数量

 

默认值:2

 

优化值:mapred.tasktracker.map.tasks.maximum = cpu数量

 

cpu数量 = 服务器CPU总核数 / 每个CPU的核数
服务器CPU总核数 = more /proc/cpuinfo | grep 'processor' | wc -l
每个CPU的核数 = more /proc/cpuinfo | grep 'cpu cores'

mapred.map.tasks

官方的解释:The default number of map tasks per job

 

我的解释:一个Job会使用task tracker的map任务槽数量,这个值 ≤ mapred.tasktracker.map.tasks.maximum

 

默认值:2

 

优化值:

  1. CPU数量 (我们目前的实践值)
  2. (CPU数量 > 2) ? (CPU数量 * 0.75) : 1  (mapr的官方建议)

 

注意:map任务的数量是由input spilit决定的,和上面两个参数无关

mapred.tasktracker.reduce.tasks.maximum

 

官方解释:The maximum number of reduce tasks that will be run  simultaneously by a task tracker.

 

我的理解:一个task tracker最多可以同时运行的reduce任务数量

 

默认值:2

 

优化值: (CPU数量 > 2) ? (CPU数量 * 0.50): 1 (mapr的官方建议)

mapred.reduce.tasks

 

官方解释:The default number of reduce tasks per job. Typically set to 99%  of the cluster's reduce capacity, so that if a node fails the reduces can  still be executed in a single wave.

 

我的理解:一个Job会使用task tracker的reduce任务槽数量

 

默认值:1

 

优化值:

  • 0.95 * mapred.tasktracker.tasks.maximum

理由:启用95%的reduce任务槽运行task, recude task运行一轮就可以完成。剩余5%的任务槽永远失败任务,重新执行

  • 1.75 * mapred.tasktracker.tasks.maximum

理由:因为reduce task数量超过reduce槽数,所以需要两轮才能完成所有reduce task。具体快的原理我没有完全理解,上原文:

 

     hadoop官方wiki: 写道

At 1.75 the faster nodes will finish their first round of reduces and launch a second round of reduces doing a much better job of load balancing.

 

环境变量

disable ipv6配置,修改bin/hadoop,添加下行:

 

 

HADOOP_OPTS="$HADOOP_OPTS -Djava.net.preferIPv4Stack=true"

 

Hive调优:

 

mapred.reduce.tasks

 

官方 写道
The default number of reduce tasks per job. Typically set
to a prime close to the number of available hosts. Ignored when
mapred.job.tracker is "local". Hadoop set this to 1 by default, whereas hive uses -1 as its default value.
By setting this property to -1, Hive will automatically figure out what should be the number of reducers.

 

 

我的理解
tasktracker执行hive job的reduce任务数,设置为"-1"hive将自动设置该值,策略如下:

1. hive.exec.reducers.bytes.per.reducer(默认为1GB)
2. hive.exec.reducers.max(默认为999)

mapred.reduce.tasks = min ( 参数2,总输入数据量/参数1 )

 

默认值:-1

 

优化值:显式设置为Hadoop配置中mapred.reduce.tasks值,参考上文。

 

参考资料:

 




 

http://wiki.apache.org/hadoop/HowManyMapsAndReduces

http://www.mapr.com/doc/display/MapR/mapred-site.xml

http://hi.baidu.com/dtzw/blog/item/5b64880aaf057d33b0351db4.html

http://www.tbdata.org/archives/622

http://developer.yahoo.com/hadoop/tutorial/module7.html

 

 



已有 0人发表留言,猛击->> 这里<<-参与讨论


ITeye推荐




Viewing all articles
Browse latest Browse all 15843

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>